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Vortex reconnection as the dissipative scattering of dipoles
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We propose a phenomenological model of vortex tube reconnection at high Reynolds numbers. The basic
picture is that squeezed vortex lines, formed by stretching in the region of closest approach between filaments,
interact like dipoles(monopole-antimonopole pajr®f a confining electrostatic theory. The probability of
dipole creation is found from a canonical ensemble spanned by foldings of the vortex tubes, with a temperature
parameter estimated from the typical energy variation taking place in the reconnection process. Vortex line
reshuffling by viscous diffusion is described in terms of directional transitions of the dipoles. The model is
used to fit with reasonable accuracy experimental data established long ago on the symmetric collision of
vortex rings. We also study along similar lines the asymmetric case, related to the reconnection of nonparallel
vortex tubes.

PACS numbeps): 47.32-y, 47.27 i

There is growing evidence that the dynamics of vortexand velocities (@,siné,v cosf) and (0 uv sin6,v cosé),
tubes is a necessary ingredient for a deeper understanding ipto a single ring with velocity~ (0,0,—v/2) and radius 2,
turbulence. This view, initially suggested by images of thealways occurs in a first stage. The fused ring exhibits ampli-
vorticity field produced through direct numerical simulationstude oscillation§12,13, so that a second stage characterized
[1], received strong support from the recent accurate deteby a splitting reconnection takes place with probability
mination of scaling exponents for the velocity structure func-=p(6). The two rings created after the second reconnection
tions, within a phenomenological theory which places fila-move in a plane perpendicular to the initial collision plane.
mentary configurations on a fundamental statls].  An important feature in the experiment is the existence of a
However, the present knowledge on vortex dynamics is stiltritical angle. Foro> 6.=16°, it holds thatp(6) =1, where
far from being complete, so that even in simplified situationsp(6)—0 as#—0. An explanation ofy. was given by Fohl
as in the collision of vortex rings, a formal theory remains toand Turner, based on the fact that the modes of amplitude
be developed. This difficulty is related in part to the absencescillations, which describe perturbations around a vortex
of comprehensive phenomenological descriptions that coulding of radiusr and velocity v, have a wavelength\,

provide a starting point for more elaborate discussions. =2r/n and period
We will focus our attention on the problem of vortex re-
connection. Its importance—considered more as an expecta- 24
tion in the long run—relies on the idea that the global struc- Ta(rv)=—o——75" (1)
ture of turbulent flows may depend on topology changing n(n*-1)*%

processes, like the intertwining of closed vortex tubes. Pre- . i

vious theoretical studies on vortex reconnectidr6] basi- ~ With n=2. In a CO,”'S'O” defined by the anglef2the pro-

cally corresponded to cases of low and moderate Reynold§Ct'°” of the ring’s 'velpcny on the direction transve_rse to

numbers. These attempts may be regarded as the counterpi}g SYmmetry plane is sin6. One may expect the amplitude

to interesting experimental observations reported by differen®! 0scillations in the fused ring, which depends on the colli-

groups on the collision of vortex rindg—9]. On the other ~Sion angle, to be 2when

hand, at higher Reynolds numbers, relevant effects come into

play, like stretching and the possible existence of singulari- v sing= 2r 2

ties[10,11. Another important element to be considered at To(2r,v/2)°

high Reynolds numbers is that vortex tube evolution is

hardly reproducible, due to sensitivity to initial conditions, In this case, diametrically opposite parts of the fused ring

and one has to resort, therefore, to statistical methods. Whilwill touch each other, producing reconnection. Equatin

it might seem there is no hope of an analytical treatmentmay be readily solved, yielding.=arcsing/3/27)=16°.

since there are no standard techniques to find statistical mea- There are important questions not answered on this prob-

sures in unstable dynamical systems, we show in this papéem. We would like to understand in a more detailed way the

that the well-known canonical distribution appears as a natuform of p(#), taking into account its behavior at small

ral candidate from which plausible consequences may be dangles. As we show below, this may be achieved in an ef-

rived. fective model where an important role is played by the dy-
In an experiment performed about 25 years ago, Fohl andamics of interacting dipoles.

Turner[7] studied the symmetric collision of two identical To start, imagine two vortex tubes, locally antiparallel in

vortex rings in water at high Reynolds number (R&00), some neighborhoof, both carrying the same flux and hav-

approaching each other with variable angle Zhey found ing identical circular cross sections. A description of the

that the fusion of colliding vortex rings, both with radius physical mechanism underlying reconnection was put for-
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FIG. 1. Sketch of the configuration of the vortex tubes in the, gim i expressions, the factor 148in Eq. (4) will be
region of closest approximation. An attractive interaction betweenSu ressed henceforth, corresponding to the replacegent
the oppositely oriented stretched segmehtipoles™) is followed P ’ P 9 P

by vorticity cancellation(not represented in the pictyreand then —2 V2.1T¢>..Taking the stre'gched segments_ to be identical,
by the right-angle transition of the dipoles. both with circular cross section of radies< 8, it follows that

2
ward by Saffmari5]. In his model, the strain field shrink3 —arcsin?ﬁé 9) +1] ==,
in the plane perpendicular to the vortex tubes, so that viscous 4¢°5 d g g
annihilation of vortex lines occurs, reducing the circulation (6)
in Q). Therefore, a pressure gradient along the vortex’s corerEy

1/2
—1+

E, (25
=In

develops, which increases strain and then viscous diffusio h the computation ok, the kernel in Eq(4) is regularized

enhancing reconnection in a self-induced way. The equation means of

assumed to describe these steps give reasonable answers, in 1 1

spite of some disagreements with real and numerical experi- NIRRT (7)
ments[5,6]. Saffman’s model is in fact devoted to the situ- [Xx=x"|  [(x—=x")*+ €]

ation of two antiparallel vortex tubes interacting at close he contribution to the enerav which comes from the inter-
enough distance. The model works better in the case o-’f_ 9y

strong viscous diffusionlow Reynolds numbes where action between the stretched and nonstretched parts is

vorticity amplification is not very large. _ /7L 22y ~(1R) ~(2R) ~(1L) ~(2R)
Here we suggest a scenario of reconnection at high Rey- Eiz=(0™, o) H (o, o) (o, 017)
nolds numbers, when stretching effects become relevant, +<(:)(1R) (:)(ZL)> (8)

which probably does not disagree with Saffman’s model,

since its application will be related to a different range ofwith the superscriptd. and R denoting the left and right

physical parameters. The picture we will consider is that inyortex tubes. The effect of screening between the two vortex
the collision of vortex tubes a system of “dipoles” emergesiypes is evaluated from the estimate

after some stretching in a process characterized by very

small energy lost. Reconnection is finished with right-angle Ei “ 11 S
transitions and subsequent collapse of dipoles, through vor- 44)—25~n§_:l n m@ . 9)

tex line reshuffling by viscous diffusion. The main events are

depicted in Fig. 1. Itis important to keep in mind that dipoleShg apove expression is derived from a discretized version
are just effective structures which represent stretched vortey; integral (4) in terms of vortex tube segments of length
tube segmenttby which we mean, throughout this work, an g giscussed in Rdf15], where we additionally used the fact

analogy with theelectric dipoledefinition). In a more rigor- ¢ the vorticity field is antisymmetric under the interchange
ous approach the reconnection problem should be address R. In the reconnection experiments, typically fluctu-

in terms of vortex sheets rather than quasi-one-dimensionat d e d. This | litv imoli
supports of vorticity, since numerical simulationd,14] ates around some mean valge d. This inequality implies,

show that vortex tubes flatten in the reconnection region dulith Egs.(6) and(9), that for e/ 5<1 the interaction energy
to stretching. Dipoles have to be regarded only as a useflt;, may be neglected when comparedgg and, therefore,
approximation, from which it is possible to obtain phenom-g~E, +E, [as an example, consider the choidé~ 102,
en(\)/{/oglcal _retsultstlndthe ilrzp[estt(;]omputatlon?l V\;?y' . which givesE;(6,d)/E;(8,d)<0.1]. We conclude that the

€ are interested in studying the energy ot a flow glVenpositive energy variation due to stretching is local, being

by two long vortex tubes, both carrying vorticity fluk with compensated for by a reduction of energy through foldings
stretched segments of lengéhend separated by the distance ¢ thg vortex tubeﬁ/S]. oy g g

d, as shown in Fig. 1. Vorticity may be decomposedcas Let us now discuss the close relationship between the
=wM+»®, where o is the field locally amplified by stretched vortex tube segments and dipoles of a confining

stretching, andw® is the field at other places along the electrostatic theory. Lep;(x) and p,(x) be the dipole mo-
tubes. The energig=E(6,d) may be written as ments of two charge distributions, defined in compact re-
gions(); and(),, respectively. The interaction energy asso-

E=E,+E,+Ey,, 3) ciated with a linear confining potential is

— B3vd3v%/ vy — %/ IV . A (2 \Y . A/
where, introducing the notation Eint f dXdX! [x=X|V- P (X)V-p2(x"). (10
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Through integration by parts, we obtain small angles are involved 6= 6.=16°), this expression
may be effectively regarded as a linear interpolation between

Eo(Pr.D)— | d3Xd3X (P1(X)-F)(Po(X")-1)|F] 3, the maximum valued=4c,r, which occurs at=0°, and

it (P1,P2) f (P00 1)(P2(X")- Dl the minimum valued=0, at 6= 6,. Another important pa-

(1) rameter is the mean length of the stretched vortex tube seg-

- - - . . ments. We define it a8=c.r. It is convenient to use dimen-
wherer=x—x". Taking {1; and (), as oriented segments, 2

parallel to the vorticity field and parametrized by (8)0and ~ Sionless units wheré=1 and

(—d,0,6—s), with 0<s=< 6§ and §<d, the scalar products in

the second term in Eq11) may be neglected. In this situa- Y 2_77 :

. . o . . ) d(e)=4 1 siné |. (15
tion the result may be identified with the interaction energy Co \/§

associated with vorticity fields given by, and 52. N .

An alternative and straightforward way to obtain the con-Due to the additive property of energieS=E;+E,, we
nection with confining electrostatics is to represent the dimay interpret the random behavior 6fas being related to
poles as “monopole-antimonopole” pairs. This is done byfluctuations ofE; in a canonical ensemble. The elements of
replacing the stretched vortex tube segments by monopo|é§e canonical ensemble correspond to folded configurations
at positions (0,08) and (—d,0,0) and antimonopoles at Of the nonstretched parts of the vortex tubes, which act like a
(0,0,0) and ¢d,0,8). These points are just the boundariesreservoir exchanging energy with the stretched region. The
of Q; and,. The monopolgantimonopolg is the source Probability density to have stretching lengthe@< is
(sink) of a radially symmetric vorticity field, which is not 1
solenoidal—and hence deprived of direct physical meaning. p(8,d)=2""ex — BE,(5,d)], (16)

The field of a monopole-antimonopole pair is given @s

N R where g is the “inverse temperature” and
=M+ w7, where

w(t)()_()): Iial — 1_) i (12) Z: JO dXEXF[_IBEl(X,d)] (17)
X

- . . is the partition function. The definitioA=1 is used to find
Above, x.. gives the position of the monopole with charge the temperatureg~1~E,(1.0d), which is the energy nec-

i(b.' To compute the_ energy of a system .Of monOpOIGTessary for the creation of stretched segments of IeEgIFhe
antimonopole pairs, it is necessary to regularize infrared di

) o > _probability to have reconnection is, thus,
vergencies. Defining the flow inside a large sphere of radmg y
A —oo, we will have

p(0)= | dxp(x.d()). (18)
(0®,0P)=25(p,q) P> (A =[x~ X, (13 fd(@

where p,g==, and #(p,q)=1 for p=q; otherwise Itis notour purpose to derive the above statistical mechani-
7(p,q)=—1. The energy of the interacting monopole- @l correspondence from first principles; we take it as a hy-

antimonopole pairs considered here is, then, pothesis. The main problem would be to show that energy
fluctuations take place on a time scale much larger than the
E=4¢ 5+d—(d?+ 6%)22]. (14)  one of reconnection~ €2/ ¢; see Ref.[3]). On the other

hand, the relaxation time for the vortex system to reach ther-

(Note that the infrared divergencies cancel for a neutral sysmal equilibrium has to be much smaller than the time spent
tem of monopoleg When §<d, the above expression differs for the whole process~r?/¢), lasting from the fusion of
from Eq. (6) only by self-energy terms, which are indepen- the vortex rings up to the instant of split. Amplitude oscilla-
dent ofd (for d/6>1 the agreement is better than 90%). tions may be an important aspect of such an analysis: at large
Since the interaction potential is linear, the force betweem, the wave velocity is\,/T,~nv, according to Eq(1).
monopoles has a constant strength and is directed along thierefore, “thermal equilibrium” would be assured by the
line joining the particles. This suggests, in the description offast propagation of perturbations along the vortex tubes. Ac-
stretched vortex tube segments as monopole-antimonopotgally, this equilibrium is not stable, due to the attraction
pairs, that wheneves>d, reconnection takes place. This is petween dipoles, so that a more complete study of the right-
in fact the same condition that follows frork,(5,d)  angle transition of dipoles would probably deal with methods
>E,(d,é), using the more precise result, H§). These are  of nonequilibrium statistical mechanics. It is worth mention-
the energies for the configurations shown in Fig. 1. Furthering, in close connection with our discussion, that a picture of
more, the energy dissipated in the reconnection process fglly developed turbulence based on vortex tubes in thermo-
AE=E (6,d)—E4(d,9). dynamical equilibrium was proposed by Chofib5]. It is

To model the symmetric collision of vortex rings, it is possible, thus, that the energy fluctuations observed in the
necessary to know how depends on the collision angle. vortex ring scattering experiments are just a signature, at the
This may be obtained by replacing the numeratoir2 Eq.  outset of turbulence, of the fundamental role to be played by
(2) by 2r—d/(2c,), which we propose to be the oscillation canonical ensemble theory at very high Reynolds numbers.
amplitude at angled, wherec, is a phenomenological pa- We need to set the value of the dimensionless phenom-
rameter. We findd(6)=4c,r(1—2msiné/y3). As only enological parametec,/c,. This is done in principle by
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FIG. 2. The probabilityp(#) for the occurrence of a splitting
reconnection. The collision angk is given in degrees. Dots rep-
resent the values measured by Fohl and Turner. The continuous lin
is the prediction of the dipole model obtained witj®

= 1/E,(1.0d), ¢,/c,=1.0, ande=0.01. b)

1.2 p(e,(l)
searching for the best agreement with experimental data, bu 1
we do not expect this parameter to significantly depart from

0.8

unit. The reason for this is tha-~r, as indicated in numeri-
cal and real experiments, ad@0°)~4r, if one assumes that 0.6
the amplitude of oscillations in the fused ring vanishes when

6=0°. We note thad(0°)/3= 4c,/c, is a quantity suitable 0.4
to experimental determination. The resultipgd) is shown 0.2
in Fig. 2, withc,;/c,=1.0 ande=0.01. As a matter of fact, o

the form of p(#) is not altered in an important way far

<0.1. In the limite/6—0, we may solve Eq(18) exactly,
and obtain that the probability of reconnection decreases ex- FIG. 3. The probabilityp(6,«) for the ocurrence of a splitting
ponentially with the distance between the vortex tubes, thaéconnection in the asymmetric case. Angles are given in degrees,
. — with 6 fixed and O<a<180°.(a) §=15°. (b) 6=17°.
is, p(6) = ex{ —d(6)/d].
We may proceed through similar computations to study
the asymmetric scattering of vortex rings, aiming at predic-Therefore, reconnection occurs whér | (6, ), or, equiva-
tions that could be tested in future experiments. In the symlently, 6>d(6,a)/cos@2). We just have to replace the
metric case considered so far, ketbe the point where the lower boundd(6) in integral (18) by d(6,a)/cos@/2). We
colliding vortex rings first touchA is diametrically opposite ~carried out computations using the same set of paramgters
to pointsB and C, which are placed in different rings. The andc;/c, for the former case ¢=0). It is possible that
angle at the verteR, defined by the segmentsB andAC is deviations grow asa becomes larger, where the dipole
180°-2¢. We study the asymmetric collision obtained from model may lose its applicability. However, there is some
the following initial configuration: while the ring which con- indication that reconnection is supressed at lang¢16],
tainsC is fixed, the other ring is rotated around the akB  which is also verified through an explicit computation of
by the anglex. This is precisely the angle between the vor-p(6,a). In Fig. 3, p(6,«) is shown with 6<a<180°, for
tex tubes at the point of contact. #=15° and 17°. The latter situation is perhaps the more
We want to find now the probabilitg(6,«) for the split-  interesting, because of the plateau givenpfy,«)=1 at
ting reconnection. As the fused ring evolves, polatandC  small values ofu.

25 50 75 100 125 150 175

move toward each other with relative velocity To summarize, we studied the problem of vortex recon-
_ nection at high Reynolds numbers, where stretching effects
2v sinf cos'(al2). (19  become important. A simple correspondence with confining

. ) . . ) electrostatics and statistical mechanics allowed us to investi-
This amounts to replacing sth which appears in Eq15),  gate the way “dipoles,” i.e., stretched vortex tube segments,
by sinfcos(a/2), to defined(6, a), the distance between the panhave in the process of reconnection. The initial dipole con-
nonparallel dipoles. Assuming that the second reconnectiofgration evolves, thanks to diffusion, toward a state which
occurs close to pointB and C, with stretched vortex tubes |inks the interacting vortex tubes. The measurements of Fohl
keeping the initial relative angle, all we need to know is  and Tumef7] for the probability of a splitting reconnection
the energy of such a configuration. Neglecting the interactioner the initial merger of vortex rings are successfully ac-
terms in the expression for the energy, which depend on thg,nted for by the present model. We also defined some
distance between dipoles, the condition for reconnection iBredictions concerning the case of asymmetric collisions, to
thenE,(8)>E,(1(6,)), where be compared with possible future experimental observations.

1(0,a)=[d?(0,a)+ 6°siré(al2)]". (20) This work was partially supported by CNPq.
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