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Vortex reconnection as the dissipative scattering of dipoles

L. Moriconi
Instituto de Fı´sica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ– 21945-970, Brazil

~Received 6 October 1999!

We propose a phenomenological model of vortex tube reconnection at high Reynolds numbers. The basic
picture is that squeezed vortex lines, formed by stretching in the region of closest approach between filaments,
interact like dipoles~monopole-antimonopole pairs! of a confining electrostatic theory. The probability of
dipole creation is found from a canonical ensemble spanned by foldings of the vortex tubes, with a temperature
parameter estimated from the typical energy variation taking place in the reconnection process. Vortex line
reshuffling by viscous diffusion is described in terms of directional transitions of the dipoles. The model is
used to fit with reasonable accuracy experimental data established long ago on the symmetric collision of
vortex rings. We also study along similar lines the asymmetric case, related to the reconnection of nonparallel
vortex tubes.

PACS number~s!: 47.32.2y, 47.27.2i
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There is growing evidence that the dynamics of vor
tubes is a necessary ingredient for a deeper understandi
turbulence. This view, initially suggested by images of t
vorticity field produced through direct numerical simulatio
@1#, received strong support from the recent accurate de
mination of scaling exponents for the velocity structure fun
tions, within a phenomenological theory which places fi
mentary configurations on a fundamental status@2#.
However, the present knowledge on vortex dynamics is
far from being complete, so that even in simplified situatio
as in the collision of vortex rings, a formal theory remains
be developed. This difficulty is related in part to the abse
of comprehensive phenomenological descriptions that co
provide a starting point for more elaborate discussions.

We will focus our attention on the problem of vortex r
connection. Its importance—considered more as an expe
tion in the long run—relies on the idea that the global str
ture of turbulent flows may depend on topology chang
processes, like the intertwining of closed vortex tubes. P
vious theoretical studies on vortex reconnection@3–6# basi-
cally corresponded to cases of low and moderate Reyn
numbers. These attempts may be regarded as the counte
to interesting experimental observations reported by differ
groups on the collision of vortex rings@7–9#. On the other
hand, at higher Reynolds numbers, relevant effects come
play, like stretching and the possible existence of singul
ties @10,11#. Another important element to be considered
high Reynolds numbers is that vortex tube evolution
hardly reproducible, due to sensitivity to initial condition
and one has to resort, therefore, to statistical methods. W
it might seem there is no hope of an analytical treatme
since there are no standard techniques to find statistical m
sures in unstable dynamical systems, we show in this pa
that the well-known canonical distribution appears as a n
ral candidate from which plausible consequences may be
rived.

In an experiment performed about 25 years ago, Fohl
Turner @7# studied the symmetric collision of two identica
vortex rings in water at high Reynolds number (Re;4000),
approaching each other with variable angle 2u. They found
that the fusion of colliding vortex rings, both with radiusr
PRE 611063-651X/2000/61~3!/2640~5!/$15.00
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and velocities (0,v sinu,v cosu) and (0,2v sinu,v cosu),
into a single ring with velocity;(0,0,2v/2) and radius 2r ,
always occurs in a first stage. The fused ring exhibits am
tude oscillations@12,13#, so that a second stage characteriz
by a splitting reconnection takes place with probabilityp
5p(u). The two rings created after the second reconnec
move in a plane perpendicular to the initial collision plan
An important feature in the experiment is the existence o
critical angle. Foru.uc.16°, it holds thatp(u)51, where
p(u)→0 asu→0. An explanation ofuc was given by Fohl
and Turner, based on the fact that the modes of amplit
oscillations, which describe perturbations around a vor
ring of radius r and velocity v, have a wavelengthln
52pr /n and period

Tn~r ,v !5
2pr

n~n221!1/2v
, ~1!

with n>2. In a collision defined by the angle 2u, the pro-
jection of the ring’s velocity on the direction transverse
the symmetry plane isv sinu. One may expect the amplitud
of oscillations in the fused ring, which depends on the co
sion angle, to be 2r when

v sinu5
2r

T2~2r ,v/2!
. ~2!

In this case, diametrically opposite parts of the fused r
will touch each other, producing reconnection. Equation~2!
may be readily solved, yieldinguc5arcsin(A3/2p).16°.

There are important questions not answered on this p
lem. We would like to understand in a more detailed way
form of p(u), taking into account its behavior at sma
angles. As we show below, this may be achieved in an
fective model where an important role is played by the d
namics of interacting dipoles.

To start, imagine two vortex tubes, locally antiparallel
some neighborhoodV, both carrying the same flux and hav
ing identical circular cross sections. A description of t
physical mechanism underlying reconnection was put f
2640 ©2000 The American Physical Society
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ward by Saffman@5#. In his model, the strain field shrinksV
in the plane perpendicular to the vortex tubes, so that visc
annihilation of vortex lines occurs, reducing the circulati
in V. Therefore, a pressure gradient along the vortex’s co
develops, which increases strain and then viscous diffus
enhancing reconnection in a self-induced way. The equat
assumed to describe these steps give reasonable answe
spite of some disagreements with real and numerical exp
ments@5,6#. Saffman’s model is in fact devoted to the sit
ation of two antiparallel vortex tubes interacting at clo
enough distance. The model works better in the case
strong viscous diffusion~low Reynolds numbers!, where
vorticity amplification is not very large.

Here we suggest a scenario of reconnection at high R
nolds numbers, when stretching effects become relev
which probably does not disagree with Saffman’s mod
since its application will be related to a different range
physical parameters. The picture we will consider is tha
the collision of vortex tubes a system of ‘‘dipoles’’ emerg
after some stretching in a process characterized by v
small energy lost. Reconnection is finished with right-an
transitions and subsequent collapse of dipoles, through
tex line reshuffling by viscous diffusion. The main events a
depicted in Fig. 1. It is important to keep in mind that dipol
are just effective structures which represent stretched vo
tube segments~by which we mean, throughout this work, a
analogy with theelectric dipoledefinition!. In a more rigor-
ous approach the reconnection problem should be addre
in terms of vortex sheets rather than quasi-one-dimensi
supports of vorticity, since numerical simulations@4,14#
show that vortex tubes flatten in the reconnection region
to stretching. Dipoles have to be regarded only as a us
approximation, from which it is possible to obtain pheno
enological results in the simplest computational way.

We are interested in studying the energy of a flow giv
by two long vortex tubes, both carrying vorticity fluxf, with
stretched segments of lengthd and separated by the distan
d, as shown in Fig. 1. Vorticity may be decomposed asvW

5vW (1)1vW (2), where vW (1) is the field locally amplified by
stretching, andvW (2) is the field at other places along th
tubes. The energyE5E(d,d) may be written as

E5E11E21E12, ~3!

where, introducing the notation

FIG. 1. Sketch of the configuration of the vortex tubes in t
region of closest approximation. An attractive interaction betwe
the oppositely oriented stretched segments~‘‘dipoles’’ ! is followed
by vorticity cancellation~not represented in the picture!, and then
by the right-angle transition of the dipoles.
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^vW ,hW &[
1

8pE d3xWd3xW8
1

uxW2xW8u
v i~xW !h i~xW8!, ~4!

we have

E15^vW (1),vW (1)&, E25^vW (2),vW (2)&,
~5!

E1252^vW (1),vW (2)&.

To simplify expressions, the factor 1/8p in Eq. ~4! will be
supressed henceforth, corresponding to the replacemef
→2A2pf. Taking the stretched segments to be identic
both with circular cross section of radiuse!d, it follows that

E1

4f2d
5 lnS 2d

e D2arcsinhS d

dD211F S d

d D 2

11G1/2

2
d

d
.

~6!

In the computation ofE1, the kernel in Eq.~4! is regularized
by means of

1

uxW2xW8u
→ 1

@~xW2xW8!21e2#1/2
. ~7!

The contribution to the energy which comes from the int
action between the stretched and nonstretched parts is

E125^vW (1L),vW (2L)&1^vW (1R),vW (2R)&1^vW (1L),vW (2R)&

1^vW (1R),vW (2L)&, ~8!

with the superscriptsL and R denoting the left and right
vortex tubes. The effect of screening between the two vor
tubes is evaluated from the estimate

E12

4f2d
; (

n51

` F1

n
2

d

@n2d21d2#1/2G . ~9!

The above expression is derived from a discretized vers
of integral~4! in terms of vortex tube segments of lengthd,
as discussed in Ref.@15#, where we additionally used the fac
that the vorticity field is antisymmetric under the interchan
L↔R. In the reconnection experiments,d typically fluctu-
ates around some mean valued̄.d. This inequality implies,
with Eqs.~6! and~9!, that fore/ d̄!1 the interaction energy
Ē12 may be neglected when compared toĒ1, and, therefore,
E.E11E2 @as an example, consider the choicee/ d̄;1022,
which givesE12( d̄,d)/E1( d̄,d),0.1#. We conclude that the
positive energy variation due to stretching is local, bei
compensated for by a reduction of energy through foldin
of the vortex tubes@15#.

Let us now discuss the close relationship between
stretched vortex tube segments and dipoles of a confin
electrostatic theory. LetpW 1(xW ) and pW 2(xW ) be the dipole mo-
ments of two charge distributions, defined in compact
gionsV1 andV2, respectively. The interaction energy ass
ciated with a linear confining potential is

Eint;E d3xWd3xW8uxW2xW8u¹W •pW 1~xW !¹W •pW 2~xW8!. ~10!

n
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Through integration by parts, we obtain

Eint;^pW 1 ,pW 2&2E d3xWd3xW8~pW 1~xW !•rW !~pW 2~xW8!•rW !urWu23,

~11!

where rW5xW2xW8. Taking V1 and V2 as oriented segments
parallel to the vorticity field and parametrized by (0,0,s) and
(2d,0,d2s), with 0<s<d andd!d, the scalar products in
the second term in Eq.~11! may be neglected. In this situa
tion the result may be identified with the interaction ener
associated with vorticity fields given bypW 1 andpW 2.

An alternative and straightforward way to obtain the co
nection with confining electrostatics is to represent the
poles as ‘‘monopole-antimonopole’’ pairs. This is done
replacing the stretched vortex tube segments by monop
at positions (0,0,d) and (2d,0,0) and antimonopoles a
(0,0,0) and (2d,0,d). These points are just the boundari
of V1 and V2. The monopole~antimonopole! is the source
~sink! of a radially symmetric vorticity field, which is no
solenoidal—and hence deprived of direct physical mean
The field of a monopole-antimonopole pair is given asvW

5vW (1)1vW (2), where

v i
(6)~xW !57

f

4p
] i

1

uxW2xW 6u
. ~12!

Above, xW 6 gives the position of the monopole with charg
6f. To compute the energy of a system of monopo
antimonopole pairs, it is necessary to regularize infrared
vergencies. Defining the flow inside a large sphere of rad
L→`, we will have

^vW (p),vW (q)&52h~p,q!f2~L2uxW p2xWqu!, ~13!

where p,q56, and h(p,q)51 for p5q; otherwise
h(p,q)521. The energy of the interacting monopol
antimonopole pairs considered here is, then,

E54f2@d1d2~d21d2!1/2#. ~14!

~Note that the infrared divergencies cancel for a neutral s
tem of monopoles.! Whend!d, the above expression differ
from Eq. ~6! only by self-energy terms, which are indepe
dent of d ~for d/d.1 the agreement is better than 90%
Since the interaction potential is linear, the force betwe
monopoles has a constant strength and is directed along
line joining the particles. This suggests, in the description
stretched vortex tube segments as monopole-antimono
pairs, that wheneverd.d, reconnection takes place. This
in fact the same condition that follows fromE1(d,d)
.E1(d,d), using the more precise result, Eq.~6!. These are
the energies for the configurations shown in Fig. 1. Furth
more, the energy dissipated in the reconnection proces
DE5E1(d,d)2E1(d,d).

To model the symmetric collision of vortex rings, it
necessary to know howd depends on the collision angle
This may be obtained by replacing the numerator 2r in Eq.
~2! by 2r 2d/(2c1), which we propose to be the oscillatio
amplitude at angleu, wherec1 is a phenomenological pa
rameter. We findd(u)54c1r (122p sinu/A3). As only
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small angles are involved (0<u<uc.16°), this expression
may be effectively regarded as a linear interpolation betw
the maximum valued[4c1r , which occurs atu50°, and
the minimum valued50, at u5uc . Another important pa-
rameter is the mean length of the stretched vortex tube
ments. We define it asd̄5c2r . It is convenient to use dimen
sionless units whered̄51 and

d~u!54
c1

c2
S 12

2p

A3
sinu D . ~15!

Due to the additive property of energies,E5E11E2, we
may interpret the random behavior ofd as being related to
fluctuations ofE1 in a canonical ensemble. The elements
the canonical ensemble correspond to folded configurat
of the nonstretched parts of the vortex tubes, which act lik
reservoir exchanging energy with the stretched region. T
probability density to have stretching length 0<d<` is

r~d,d!5Z21exp@2bE1~d,d!#, ~16!

whereb is the ‘‘inverse temperature’’ and

Z5E
0

`

dxexp@2bE1~x,d!# ~17!

is the partition function. The definitiond̄51 is used to find
the temperature,b21.E1(1.0,d), which is the energy nec
essary for the creation of stretched segments of lengthd̄. The
probability to have reconnection is, thus,

p~u!5E
d(u)

`

dxr„x,d~u!…. ~18!

It is not our purpose to derive the above statistical mecha
cal correspondence from first principles; we take it as a
pothesis. The main problem would be to show that ene
fluctuations take place on a time scale much larger than
one of reconnection (;e2/f; see Ref.@3#!. On the other
hand, the relaxation time for the vortex system to reach th
mal equilibrium has to be much smaller than the time sp
for the whole process (;r 2/f), lasting from the fusion of
the vortex rings up to the instant of split. Amplitude oscill
tions may be an important aspect of such an analysis: at l
n, the wave velocity isln /Tn;nv, according to Eq.~1!.
Therefore, ‘‘thermal equilibrium’’ would be assured by th
fast propagation of perturbations along the vortex tubes.
tually, this equilibrium is not stable, due to the attracti
between dipoles, so that a more complete study of the rig
angle transition of dipoles would probably deal with metho
of nonequilibrium statistical mechanics. It is worth mentio
ing, in close connection with our discussion, that a picture
fully developed turbulence based on vortex tubes in therm
dynamical equilibrium was proposed by Chorin@15#. It is
possible, thus, that the energy fluctuations observed in
vortex ring scattering experiments are just a signature, at
outset of turbulence, of the fundamental role to be played
canonical ensemble theory at very high Reynolds numbe

We need to set the value of the dimensionless phen
enological parameterc1 /c2. This is done in principle by
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searching for the best agreement with experimental data
we do not expect this parameter to significantly depart fr
unit. The reason for this is thatd̄;r , as indicated in numeri-
cal and real experiments, andd(0°);4r , if one assumes tha
the amplitude of oscillations in the fused ring vanishes wh
u50°. We note thatd(0°)/d̄54c1 /c2 is a quantity suitable
to experimental determination. The resultingp(u) is shown
in Fig. 2, with c1 /c251.0 ande50.01. As a matter of fact
the form of p(u) is not altered in an important way fore
,0.1. In the limit e/ d̄→0, we may solve Eq.~18! exactly,
and obtain that the probability of reconnection decreases
ponentially with the distance between the vortex tubes,
is, p(u)5exp@2d(u)/d̄#.

We may proceed through similar computations to stu
the asymmetric scattering of vortex rings, aiming at pred
tions that could be tested in future experiments. In the sy
metric case considered so far, letA be the point where the
colliding vortex rings first touch.A is diametrically opposite
to pointsB and C, which are placed in different rings. Th
angle at the vertexA, defined by the segmentsAB andAC is
180°-2u. We study the asymmetric collision obtained fro
the following initial configuration: while the ring which con
tainsC is fixed, the other ring is rotated around the axisAB
by the anglea. This is precisely the angle between the vo
tex tubes at the point of contact.

We want to find now the probabilityp(u,a) for the split-
ting reconnection. As the fused ring evolves, pointsB andC
move toward each other with relative velocity

2v sinu cos2~a/2!. ~19!

This amounts to replacing sinu, which appears in Eq.~15!,
by sinu cos2(a/2), to defined(u,a), the distance between th
nonparallel dipoles. Assuming that the second reconnec
occurs close to pointsB and C, with stretched vortex tube
keeping the initial relative anglea, all we need to know is
the energy of such a configuration. Neglecting the interac
terms in the expression for the energy, which depend on
distance between dipoles, the condition for reconnectio
thenE1(d).E1„l (u,a)…, where

l ~u,a!5@d2~u,a!1d2sin2~a/2!#1/2. ~20!

FIG. 2. The probabilityp(u) for the occurrence of a splitting
reconnection. The collision angleu is given in degrees. Dots rep
resent the values measured by Fohl and Turner. The continuous
is the prediction of the dipole model obtained withb
51/E1(1.0,d), c1 /c251.0, ande50.01.
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Therefore, reconnection occurs whend. l (u,a), or, equiva-
lently, d.d(u,a)/cos(a/2). We just have to replace th
lower boundd(u) in integral ~18! by d(u,a)/cos(a/2). We
carried out computations using the same set of parameteb
and c1 /c2 for the former case (a50). It is possible that
deviations grow asa becomes larger, where the dipo
model may lose its applicability. However, there is som
indication that reconnection is supressed at largea @16#,
which is also verified through an explicit computation
p(u,a). In Fig. 3, p(u,a) is shown with 0<a<180°, for
u515° and 17°. The latter situation is perhaps the m
interesting, because of the plateau given byp(u,a)51 at
small values ofa.

To summarize, we studied the problem of vortex reco
nection at high Reynolds numbers, where stretching effe
become important. A simple correspondence with confin
electrostatics and statistical mechanics allowed us to inve
gate the way ‘‘dipoles,’’ i.e., stretched vortex tube segmen
behave in the process of reconnection. The initial dipole c
figuration evolves, thanks to diffusion, toward a state wh
links the interacting vortex tubes. The measurements of F
and Turner@7# for the probability of a splitting reconnectio
after the initial merger of vortex rings are successfully a
counted for by the present model. We also defined so
predictions concerning the case of asymmetric collisions
be compared with possible future experimental observatio

This work was partially supported by CNPq.

ine

FIG. 3. The probabilityp(u,a) for the ocurrence of a splitting
reconnection in the asymmetric case. Angles are given in degr
with u fixed and 0<a<180°. ~a! u515°. ~b! u517°.
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